Advertisement

Applied Taguchi method for fatigue testing of customized hip implant

Abstract

Purpose

Human activities generate stresses, which vary with time and may result in fatigue failure of the customized hip implant. This study aims to investigate fatigue testing of customized hip implants using the minimum number of experiments by the Taguchi method, for 147 patients. This study was also useful to determine the influential geometrical parameters on the fatigue safety factor of customized hip implants.

Methods

Horizontal offset (HO), vertical offset (VO) and neck shaft angle (NSA) of the hip joint of 147 patients were measured on computed tomography (CT) scanned images. Stress and strain of hip implants were calculated by finite element analysis and validated by in vitro experimental tests. Fatigue safety factors were calculated by Goodman, Soderberg and Gerber’s fatigue theories and maximum stresses.

Results

Analysis of variance results show that the highest impact on fatigue safety factors was equal to 54.38% for HO, 16.33% for VO, and was equal to 29.16% for NSA with reference to Goodman, Soderberg and Gerber’s fatigue theories. The hip implant shape of experiment no. 8 has the highest safety factor value compared to all other hip implants.

Conclusions

The results show that HO has the maximum influence on fatigue safety factors. The determination of influential geometric parameters may be useful to redesign customized hip implants in order to achieve the highest fatigue safety factor. The Taguchi method is suitable for fatigue testing of custom hip implant with a minimum number of experiments.

Int J Artif Organs 2016; 39(12): 611 - 618

Article Type: ORIGINAL RESEARCH ARTICLE

DOI:10.5301/ijao.5000545

Authors

Mangesh R. Dharme, Abhaykumar M. Kuthe, Tushar R. Deshmukh

Article History

Disclosures

Financial support: No grants or funding have been received for this study.
Conflict of interest: None of the authors has financial interest related to this study to disclose.

This article is available as full text PDF.

  • If you are a Subscriber, please log in now.

  • Article price: Eur 36,00
  • You will be granted access to the article for 72 hours and you will be able to download any format (PDF or ePUB). The article will be available in your login area under "My PayPerView". You will need to register a new account (unless you already own an account with this journal), and you will be guided through our online shop. Online purchases are paid by Credit Card through PayPal.
  • If you are not a Subscriber you may:
  • Subscribe to this journal
  • Unlimited access to all our archives, 24 hour a day, every day of the week.

Authors

Affiliations

  • Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur - India
  • Department of Mechanical Engineering, Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati - India

Article usage statistics

The blue line displays unique views in the time frame indicated.
The yellow line displays unique downloads.
Views and downloads are counted only once per session.

No supplementary material is available for this article.